Notícias

...

Opinion mining for app reviews: an analysis of textual representation and predictive models

Popular mobile applications receive millions of user reviews. These reviews contain relevant information for software maintenance, such as bug reports and improvement suggestions. The review’s information is a valuable knowledge source for software requirements engineering since the apps review analysis helps make strategic decisions to improve the app quality.

...

Learning to sense from events via semantic variational autoencoder

O trabalho propõe o método SVAE, um Variational Autoencoder Semântico que representa os eventos. O método é formado por: (i) um modelo de linguagem dependente de contexto Bidiretional Encoder From Transformers (BERT) (considerado um dos estado-da-arte para tarefas envolvendo texto) que captura características sintáticas e semânticas dos textos; e (ii) um Variational Autoencoder, considerado um dos estado-da-arte para aprendizado de representação.

...

Análise de Sentimentos: Multi-Domain Aspect Extraction using Bidirectional Encoder Representations from Transformers

Neste artigo, propomos uma abordagem para a extração de aspectos em um cenário de transferência de conhecimento multi-domínio, aproveitando assim os dados rotulados de diferentes domínios (origem) para extrair aspectos de um novo domínio não rotulado (destino)

...

Ciência de Dados para Eleições: A Graph-Based Spatial Cross-Validation Approach to Understand Election Results

This paper addresses the dependence issues inherent from spatial data by proposing a novel graph-based Spatial Cross Validation approach designed to assess models learned with selected features from spatially contextualized electoral datasets.

...

Ciência de Dados para Eleições: Analyzing spatio-temporal voting patterns in Brazilian elections

This paper proposes a simple data science pipeline to analyze Brazilian elections at the municipal level, in the spatial and temporal dimensions.

...

Abordagem baseada em redes para Positive and Unlabeled Learning no periódico Information Sciences

O aprendizado com exemplos positivos e não rotulados (do Inglês Positive and Unlabeled Learning - PUL) permite identificar em um conjuntos de exemplos não rotulados os documentos positivos (os quais o usuário rotulou ou tem interesse) e os exemplos negativos. Além disso, uma vez identificados documentos positivos e negativos, pode-se induzir modelos de classificação para classificar exemplos não vistos.

...

Artigo sobre Redes Complexas: 'A Critical Survey of the Multilevel Method in Complex Networks'

Multilevel optimization aims at reducing the cost of executing a target network-based algorithm by exploiting coarsened, i.e., reduced or simplified, versions of the network. There is a growing interest in multilevel algorithms in networked systems, mostly motivated by the urge for solutions capable of handling large-scale networks. We believe our survey provides a useful resource to individuals interested in learning about multilevel strategies, as well as to those engaged in advancing theoretical and practical aspects of the method or in developing solutions in novel application domains.

...

Artigo sobre Mineração de Textos: 'Knowledge-enhanced document embeddings for text classification'

Accurate semantic representation models are essential in text mining applications. For a successful application of the text mining process, the text representation adopted must keep the interesting patterns to be discovered. Although competitive results for automatic text classification may be achieved with traditional bag of words, such representation model cannot provide satisfactory classification performances on hard settings where richer text representations are required. In this paper, we present an approach to represent document collections based on embedded representations of words and word senses.

...

Artigo sobre Análise de Sentimentos: 'Cross-domain aspect extraction for sentiment analysis: A transductivelearning approach'

Aspect-Based Sentiment Analysis (ABSA) is a promising approach to analyze consumer reviews at a high level of detail, where the opinion about each feature of the product or service is considered. ABSA usually explores supervised inductive learning algorithms, which requires intense human effort for the labeling process. In this paper, we investigate Cross-Domain Transfer Learning approaches, in which aspects already labeled in some domains can be used to support the aspect extraction of another domain where there are no labeled aspects.

Mostrando de 1 até 9 de 9 registros